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Abstract. Plant identification is an important problem for ecologist-
s, amateur botanists, educators, and so on. Leaf, which can be easily
obtained, is usually one of the important factors of plants. In this pa-
per, we propose a growing convolution neural network (GCNN) for plant
leaf identification and report the promising results on the ImageCLE-
F2012 Plant Identification database. The GCNN owns a growing struc-
ture which starts training from a simple structure of a single convolution
kernel and is gradually added new convolution neurons to. Simultaneous-
ly, the growing connection weights are modified until the squared-error
achieves the desired result. Moreover, we propose a progressive learning
method to determine the number of learning samples, which can further
improve the recognition rate. Experiments and analyses show that our
proposed GCNN outperforms other state-of-the-art algorithms such as
the traditional CNN and the hand-crafted features with SVM classifiers.

1 Introduction

Plant identification is a basic work of plant research and development, and is
very important for plant protection and exploration of distinction and genetic
relationship between plant species. Usually, the leaves can be easily gotten from
plant and have sufficient visible characteristics for differentiating between many
species. Currently, plant identification mainly relies on plant scientists with spe-
cialized knowledge. However, there exist a large number of plant species, which
are hard to be fully identified by a plant scientist. Thus, an automatic plant
species identification system by computers and related machine learning algo-
rithms is desired.

The existing state-of-the-art methods of plant leaf identification usually use
hand-crafted features such as shape [1], local binary patterns (LBP) [2], pyramid
histograms of oriented gradients (PHOG) [3] and their combinations [4], followed
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by a trainable classifier such as support vector machine (SVM) [5][6], neural
networks [7][8][9], and so on. However, the performances of these methods largely
depend on an appropriate set of features, which are varying and need a special
design for specific tasks. Moreover, low-level features can be successfully achieved
directly, but mid-level and high-level features are difficult to be achieved without
any learning procedures [10]. The convolution neural network (CNN) [11] is such
a system that can learn generic features for different tasks, directly acting on the
two-dimensional image pixels without changing the topology of the input image.

The CNN has received much attention and has been used in lots of applica-
tions such as face detection [12], handwriting recognition [13], speech recognition
[14], and pedestrian detection [15]. Garcia and Delakis adopted a three-layer C-
NN structure to detect human face [16], and later they further improved the
collecting samples algorithm in the training process [17]. Hinton et al. [18] have
proved that increasing the number of feature detectors can significantly improve
the performance of the CNNs on various tasks. This particular kind of neural
network has no requirement for image preprocessing or feature extraction, and
it implements future extraction and pattern classification simultaneously [19].

The CNNs have much fewer parameters to be trained, compared to tradi-
tional neural networks. Further, because of the weight sharing technology, the
CNNs are easier to be trained. However, there are still some problems in the
traditional CNNs. First, the traditional CNNs have fixed structures , which are
usually not applicable to all practical problems or the learning of subsequent
samples, because the learning of subsequent sample learning often needs to over-
throw early learning to establish new weights. Second, it is difficult to determine
the number of training samples in the traditional CNNs because too few samples
can cause the under-fitting of network learning, while too many may result in
over-learning [20].

Addressing the problems mentioned above, this paper proposes a novel ap-
proach to construct a growing convolution neural network (GCNN) with a vary-
ing architecture for plant leaf identification. The construction and training start
with the simplest architecture with a single neuron for each layer, and add new
neural cells into each layer, accompanied by modifying the corresponding weight-
s, until the training target is reached. This approach can automatically adjust
the CNN structure to fit any specific task. In addition, this paper also proposes
a progressive learning method to determine the appropriate number of learning
samples for the GCNN. Compared to the traditional CNN, the proposed GCNN
model is more effective.

The reminder of the paper is organized as follows. Section 2 reviews the
traditional convolution neural network. Section 3 describes the proposed growing
convolution neural network. Section 4 presents the details of the progressive
sample learning method. Then, Section 5 shows the experimental results and
makes some discussions. Finally, a conclusion is drawn in Section 6.
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2 A Review of Convolution Neural Network

The CNN [5] is a feed-forward neural network which can extract the eigen feature
from a two-dimensional image. It can directly process grayscale images, and
allows image shift and distortion.

Fig. 1. The structure of a traditional CNN

2.1 The CNN Structure

Figure 1 shows a traditional CNN structure, consisting of an input layer, several
convolution layers, several sampling layers, and an output layer. There are un-
known weight parameters needed to be trained between two adjacent layers, the
feature maps in S2 layer are fully connected to the output layer, otherwise, the
feature maps are not fully connected between two layers. Convolution layers are
interspersed with sampling layers to reduce computation time and to gradually
improve spatial and configural invariance. A sampling layer produces downsam-
pled version of the input maps. At a convolution layer, the features from the
previous layer are convolved with learnable kernels and then fed to an activation
function to form the output feature maps. In general, the output of convolution
layers is computed as follows:

xlj = f

∑
i∈Mj

xl−1j ∗ klij + blj

 (1)

where Mj represents the set of input maps, xlj is an output map, which is given

an additive bias blj , l denotes the layer index, klij denotes convolution kernels,
and ′∗′ denotes the convolution operator.

As shown in Figure 1, an input image with simple preprocessing including
size normalization (52*52) and graying. Then a convolution operation with a
window (5*5) from all directions extracts the features of the input image, and
there by features are obtained at the C1 layer. The sampling layer S1 produces
downsampled version of the input to eliminate the deviation and image dis-
tortion. The size of feature map (48*48) in C1 becomes (24*24) by sampling
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operation of S1, and the size of sampling window of S1 is 2*2. The output of the
sampling layers is computed as follows.

xlj = f

 1

n

∑
i∈Mj

xl−1i + bl

 (2)

where n is the size of window from the convolution layer to the sampling layer
so that the output image is n-times smaller along both spatial dimensions.

2.2 The Connections and Weights of The Network

In traditional neural networks, there is an unknown parameter with respect to
each connection. However, the CNN uses a weight-sharing technology. Units at
a layer are organized in planes, sharing the same set of weights. This technology
can greatly reduce the number of free parameters and can be used to detect the
representation of the same characteristics in different angles. For the example in
Figure 1, each unit in one feature map has 25 inputs connected to a 5*5 area
in one feature map of the convolution layer. This unit is called the receptive
field [21]. Therefore, there are 25 tunable weights and a trainable bias for each
unit. Layer C1 is a convolutional layer with six feature maps, and the size of the
feature maps of C1 is 48*48. So there are 6 ∗ 26 = 156 tunable parameters and
26∗6∗48∗48 = 359, 424 connections between the input and C1 layers. Layer S1 is
a sampling layer with the sampling window of (2*2), which produces six feature
maps of (24*24). Four pixels in C1 are sampled into one pixel in S1, and there is
one tunable weight and a tunable bias for each feature map between C1 and S1.
So there are 2∗6 = 12 tunable parameters and 6∗ [(2∗2)∗ (24∗24)+(24∗24)] =
17280 connections between C1 and S1. Similarly, there are 16∗26 = 416 tunable
parameters and 26 ∗ 16 ∗ 24 ∗ 24 = 166400 connections between S1 and C2,
2 ∗ 16 = 32 tunable parameters and 16 ∗ [(4 ∗ 4) ∗ (5 ∗ 5) + (5 ∗ 5)] = 6800
connections between C2 and S2, and 16 ∗ 5 ∗ 5 + 5 = 2005 tunable parameters
and 16 ∗ 5 ∗ 5 + 5 = 2005 connections between S2 and the output layer. So
the network in Figure 1 totally contains 551,909 connections, but only 2,621
free parameters need learning. The tunable parameters are updated by iteration
based on the back-propagation (BP) algorithm [22].

3 The Proposed Growing Convolution Neural Network
(GCNN)

The performance of CNN depends greatly on the number of neurons. The recog-
nition rate of the network increases with the growth of the number of neurons,
but the computation cost also increases accordingly. Current researches main-
ly rely on prior knowledge to design the network structure. In this paper, we
propose a growth algorithm to construct the CNN, in which the network grows
up itself until it solves the target problem. Thereby, the best tradeoff can be
achieved between classification accuracy and computation cost.
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3.1 Initialization of The Network

The initial network structure is set very simple, as shown in Figure 2. The
initial network consists of two layers of convolution (C1,C2) and two layers of
sampling (S1,S2), each of which contains two feature maps. The initial network
consists of two branches (branch 1 and branch 2). There are 367 parameters in
the convolution network ‘Net0’ needed to be trained. The weights are updated
by the output and the corresponding errors at previous iteration, and the weight
updating route is marked by a dotted line in Figure 2. When the errors converge
to be lower than a threshold value, the network learning is stopped. If the error
convergence speed becomes smaller than a threshold value, then the training
process enters the first round of growth.

Fig. 2. The initial convolution neural network ‘Net0’

3.2 The First Round of Growth

Branch 3 sprouts at the first round of grows on the basis of network ’Net0’,
which results in the network ‘Net1’ shown in Figure 3. The growth rule is as
follows. The two feature maps contained in the sampling layer S1 are combined
to constitute the third feature map in the convolution layer C2, and the number
of feature maps in the convolution layer C2 and sampling layer S2 feature map is
increased by one to three. The feature map combination can increase the diversity
of features. We initialize the new neurons while the weights in Branches 1 and 2
remain unchanged. The learning route only goes through the output layer and
Branch 3 at the new growth round. The connection weights of Branch 3 are
modified iteratively until the overall error of the network converges to a small
value. If the error convergence speed becomes smaller than a threshold value,
then the training process enters the second round of growth.

3.3 The Second Round of Growth

The second growth of the network adds a feature map to each layer, producing
Branch 4 as shown in Figure 4. Thereby, there are three feature maps in the C1 or
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Fig. 3. The first round of growth: the network ‘Net1’

S1 layer, while four in the C2 or S2 layer. All learning outcomes of network Net1
are kept unchanged, and the weight modification by back-propagation algorithm
only involves Branch 4. The weights of Branch 4 are updated until the overall
error of the network converges to a small value. If the error convergence speed
becomes smaller than a threshold value, then the training process continues to
grow according to the following algorithm.

3.4 The Whole Growth Algorithm and Back-propagation Algorithm

The whole growing algorithm of the GCNN is shown in Algorithm 1. And Figure
5 shows an example of a maturing GCNN network with six branches.

Back-propagation Algorithm

Feedforward Pass Let l denote the layer index, and then the output of the
lth layer is defined as [23]:

xl = f
(
W lxl−1 + bl

)
(3)

where f (·) is an activation function, which is usually set to be sigmoid function
or hyperbolic tangent function. The outcomes of layer l − 1, namely xl−1, pass
forward the activation function to produce the final output. Given N training
samples {xn}n=1,...,N and the corresponding target vectors {tn}n=1,...,N , for a
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Fig. 4. The second round of growth: the network ‘Net2’

Fig. 5. An example of the CNN network structure of six branches
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Algorithm 1 The Whole Growing Algorithm

SET:
E denotes the squared error for training samples;
E0 denotes the squared error threshold;
s denotes the convergence speed of BP;
s0 denotes the convergence speed threshold;
Nb denotes the number of current network branches;
Initialize: E0, s0, η(the learning rate of BP), Net0;

1: if E > E0 then
2: (continue to grow the network:)
3: if s > s0 then
4: train the network with the BP algorithm;
5: else
6: (add a new branch to the current network:)
7: if Nb is an even number then
8: add a new branch starting from the S1 layer, and the feature maps in S1

layer are merged as a new starting point of the new branch;
9: Nb = Nb+ 1;

10: else
11: add a new branch starting from the input layer;
12: Nb = Nb+ 1;
13: end if ;
14: end if ;
15: else
16: stop growing;
17: end if

Output: A matured CNN.

multiclass classification problem with c classes, we have the following squared-
error loss function:

EN =
1

2

N∑
n=1

c∑
k=1

(tnk − ynk )
2 (4)

where yn is the output with respect to the input vector xn. In training process,
the targets of multiclass problems are organized as ”one-of-c” codes where the
kth element of tn is positive if the pattern xn belongs to class k.

Backpropagation Pass The errors propagate backward through the network,
which can be considered as ‘sensitivities’ of each unit with respect to perturba-
tions of the bias b. The derivative of the error can be defined

δ =
∂E

∂b
(5)

It is this derivative that is backpropagated from higher layers to lower layers
using the following propagation rule:

δl =
(
W l+1

)T
δl+1 · f ′

(
W lxl−1 + bl

)
(6)
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Finally, the delta rule is used to update the weight of a given neuron. For the
layer of l, the delta of the error with respect to each weight of this layer is
computed by the vector of inputs and the vector of sensitivities:

∂E

∂W l
= xl−1

(
δl
)T

(7)

∆W l = −η ∂E
∂W l

(8)

where η is the learning rate.

4 The Progressive Sample Learning Method

It is difficult to determine the proper number of training samples for traditional
CNNs. Too few can lead to under-fitting of network learning, while too many
may result in over-learning. Therefore, we propose a progressive sample learning
method (PSLM) which is self-organizing. The method starts with learning a
small amount of samples from each class and then adds to the training set the
samples from the classes whose errors are larger until the whole squared-error
is satisfactory. This method not only reduces the number of training samples
and simplifies learning, but also allows adding new categories. The details of
the PSLM is shown in Algorithm 2. The misclassification rate threshold in this
algorithm is set as ε = 0.3.

Algorithm 2 The Progressive Sample Learning Method

SET:
E denotes the squared error for training samples;
E0 denotes the squared error threshold;
Ai denotes the current training set for class i;
A′

i denotes an additional small sample set from class i excluding Ai;
ei denotes the misclassification rate for class i;
ε denotes a misclassification rate threshold.

1: while E > E0 do
2: Train the CNN using the training set

⋃
iAi;

3: Compute ei of the CNN for all i;
4: for each i do
5: if ei > ε then
6: Ai = Ai

⋃
A′

i;
7: else
8: Ai = Ai;
9: end if

10: end for
11: end while

Output: A learned CNN.
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5 Experiments and Analyses

Fig. 6. An example of 2D feature maps of a plant leaf image in the CNN

The experiments includes four parts: (1)The traditional CNNs to classify
plant leaf images; (2)The CNN with growing structure to classify plant leaf
images; (3)The CNN with growing structure and progressive sample learning
method to classify leaf images; (4)other state-of-the-art methods such as HSV+SVM,
Phog+SVM, HSV+Phog+SVM. We evaluate various algorithms on the dataset
of the ImageCLEF2012 [24] Plant Identification task. The database comes from
the ImageCLEF2012 competition, and it contains 126 tree species in the French
Mediterranean area, and the images for each species are contributed by various
people, but taken from the same individual plant. The database consists of three
kinds of images: scans, scan-like photos (called pseudo-scans) and natural photo-
s. We select 40 classes from ImageCLEF2012 database, each of which contains 60
leaf images of scans and scan-like for evaluations. And 40 images of each class are
selected for training and the remaining for test. The evaluation indexes include
MCR (misclassification rate), recognition time, RSME (root mean square error),
and recognition rate. We set the sample average error threshold E0 = 0.2, the
predetermined threshold of error convergence speed s0 = 0.05 and the learning
rate η = 0.0002. All experiments are implemented by the MATLAB7.1.0.183
(R14) Service Pack 3 running on a computer with the CPU of 8 Quad-Core
AMD, memory of 4 194 304 kB, and the WIN7 OS.

Figure 6 shows an example of 2D feature maps of a plant leaf image in
the CNN. Figure 7 shows the RMSE and MCR variations of the growing CNN
by iteration, respectivesly, from which we can see that the RMSE and MCR
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both decrease by iteration. Table 1 shows the comparison of recognition rate
and recognition time between different algorithms. And the number of unknown
parameters needed learning for each CNN network is also listed in Table 1.

Fig. 7. The MCR and RMSE variations of the CNN of 7 branches in training process

From Table 1, we can see that traditional CNN performs better than any
single feature with an SVM classifier, but has no advantages over fusion of several
features such as HSV and Phog. The recognition rate of the GCNN increases
with the expansion of the network scale, but the recognition time increases at
the same time. When the CNN grows to 9 branches, the recognition rate reaches
87.94%, and the PLSM helps to further improve the recognition rate, which
reaches 88.14%. However, for the CNN of 7 branches, the recognition rate already
reaches 86.42%, and 87.22% with the PLSM method, which is significantly higher
than that of traditional CNN. And the recognition time of the CNN of 7 branches
is much less than that of 9 branches. So the CNN of 7 branches may be a good
choice, considering the tradeoff between the recognition rate and recognition
time in real applications. In addition, the results in Table 1 also show that our
proposed GCNN involves much fewer unknown parameters needed learning than
the traditional CNN, which indicates that the GCNN owns simpler structure and
is easier to train.
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Table 1. The comparison of recognition rate and recognition time between different
algorithms

Algorithms

Recognition Time Number of

Recognition Rate Per Image Parameters

(%) (Second) in Network

CNN 80.34 0.53 2621

CNN+PLSM 82.05 0.51 2621

HSV+SVM 65.11 0.29 –

Phog+SVM 78.10 0.31 –

HSV+Phog+SVM 83.04 0.41 –

GCNN (5 branches) 66.53 0.43 906

GCNN (5 branches)+PLSM 71.85 0.41 906

GCNN (6 branches) 79.71 0.49 1087

GCNN (6 branches)+PLSM 81.06 0.48 1087

GCNN (7 branches) 86.42 0.61 1266

GCNN (7 branches)+PLSM 87.22 0.60 1266

GCNN (8 branches) 87.68 0.78 1447

GCNN (8 branches)+PLSM 87.89 0.78 1447

GCNN (9 branches) 87.94 0.95 1626

GCNN (9 branches)+PLSM 88.14 0.95 1626

6 Conclusion

In this paper, we have proposed GCNN with a variable topology structure, and
evaluated it on plant leaf recognition. The GCNN automatically grows to a
proper size according to the complexity of specific classification task. Also, we
have presented a progressive sample learning algorithm for the GCNN, which
can automatically determine the proper number of training samples, avoiding
under-learning or over-fitting. The experiments and analyses on the ImageCLE-
F2012 plant Identification Dataset show that our proposed GCNN outperforms
the other state-of-the-art algorithms such as traditional CNN and hand-crafted
features with SVM classifiers.
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